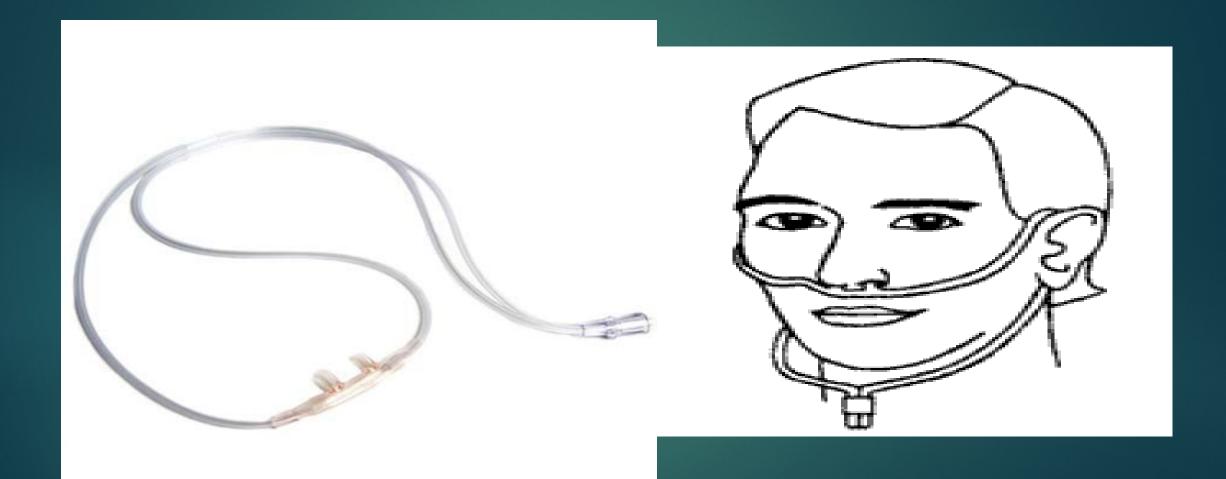
Ventilatory management of Covid -19 Pneumonia

Dr. Bhavesh Jarwani
Professor and Head,
Dept of Emergency Medicine,
Smt. NHLMMC, SVPIMSR.

TYPE OF OXYGEN DELIVERY DEVICES


LOW FLOW

- NASAL PRONGS
- SIMPLE FACE MASK
- NON-REBREATHING FACE MASK

HIGH FLOW

- VENTURI MASK
- HFNC

NASAL PRONGS

SIMPLE FACE MASKS

NON REBREATHING MASK

BIPAP

High flow nasal oxygen therapy

HFNC THERAPY

OUTLINE

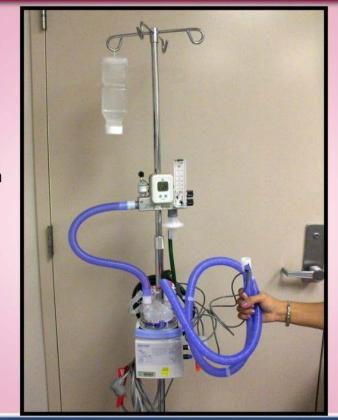
- > WHAT IS HFNC
- PURPOSE AND BENEFITS
- > SETUP
- > INDICATION AND CONTRAINDICATION

WHAT IS HIGH FLOW NASAL CANNULA

- The high flow nasal cannula is a device used to deliver fixed supplemental oxygen or airflow to a patient or person in need of respiratory help
- High-flow nasal cannula (HFNC) oxygen therapy was introduced, accompanied by heated humidification system to prevent the associated drying of upper airway mucosa and to increase patient comfort.

PURPOSE AND BENEFITS

- Delivery of optimally humidified and warm gases
- Decreased work of breathing
- Decreased body energy expenditure
- Less problems with thickened secretions
- Less problems with nasal irritation/septal damage


SETUP

- 1. High-flow nasal cannula
- 2. Oxymeter
- 3. Heater/humidifier
- 4. Continuous high-flow generator with venturi effect

LEHIGH VALLEY HEALTH NETWORK

Complete
High Flow
Oxygen System
set up

INDICATIONS

- Respiratory Distress from bronchiolitis , pneumonia ,congestive heart failure etc.
- Respiratory support postextubation and mechanical ventilation
- Weaning therapy from bipap mask
- Apnoea of prematurity

CONTRAINDICATIONS

- ▶ Blocked nasal passages
- ► Trauma/surgery to nasopharanyx

NON-INVASIVE VENTILATION

OUTLINE

- Definition
- Indication and contraindications
- Equipment
- Initial settings
- Monitoring

An iron lung maintains breathing by artificial means REAR VIEW MIRROR FOR PATIENT WINDOW BELLOWS (MOVES IN AND OUT) FOAM RUBBER COLLAR HANDLE FOR **ACCESS** MANUAL PORT **OPERATION ELECTRIC** THE BELLOWS CAUSES AIR PRESSURE IN THE MOTOR "lung" TO RISE AND FALL. RON THE PATIENT'S LUNGS ARE LUNG AIDED IN DRAWING IN AIR

BIPAP(NON-INVASIVE VENTILATION)

- Bi-level positive airway pressure is a type of non-invasive ventilation to provide positive pressure ventilation supporting patient's spontaneous breathing
- ► A higher pressure (ipap) for breath in and a lower pressure (epap) for breath out in order to :
- Decrease work of breathing
- Improve oxygenation and ventilation

INDICATIONS

- Decompensate obstructive sleep apnoea with hypercapnia
- ► INCREASE AIRWAY RESISTANCE e.g COPD EXACERBATION
- Acute-on chronic hypercapnic respiratory failure due to chest wall deformity or neuromuscular disease
- Post extubation ventilatory support
- Acute Cardiogenic pulmonary oedema

CONTRAINDICATIONS

- ▶ Facial trauma/burns
- Recent facial, upper airway or upper gastrointestinal tract surgery
- Upper airway obstruction
- Inability to protect airway and clear respiratory secretions
- Impaired consciousness(gcs<10)</p>
- Severe confusion/agitation
- Vomiting and risk of aspiration

EQUIPMENT

- 1. Bipap machine
- 2. Bipap disposable circuit
- 3. Low resistance bacterial filter
- 4. Bipap total face mask ,full face mask or nasal mask plus head strap
- 5. Disposable humidifier
- 6. Distilled water

INITIAL SETTINGS

- Bipap is often initiated with an expiratory pap (epap) of approximately 5 cm h2o and inspiratory pap(ipap) of 8 to 10 cm h2o
- ▶ These pressure can be titrated up depending upon clinical and physiologic response and patient comfort

MONITORING BIPAP

- ▶ Look at patient heart rate, respiratory rate, blood pressure
- Increasing pco2 a bad sign
- Worsening hypoxemia a bad sign

Invasive Mechanical ventilation

OUTLINE

- Definition
- > Purpose
- Indications of mechanical ventilation
- Modes of ventilation
- Complication

DEFINATION

- Invasive mechanical ventilation is implemented once a cuffed tube is inserted into trachea to allow conditioned gas to be delivered to the airways and lungs at pressure above atmospheric pressure
- ► Ventilatory support that is given through endotracheal intubation or tracheostomy is called as invasive mechanical ventilation.

Interfaces

Devices that connect the ventilator's tubing to the face allowing pressurized gas to enter into upper airway.

Full Face Masks

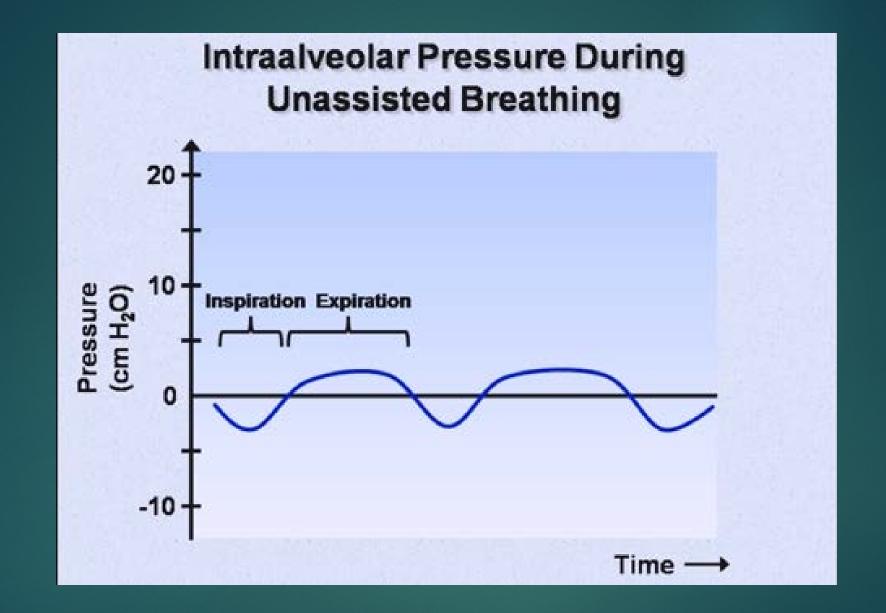
Most often successful in the critically ill patient

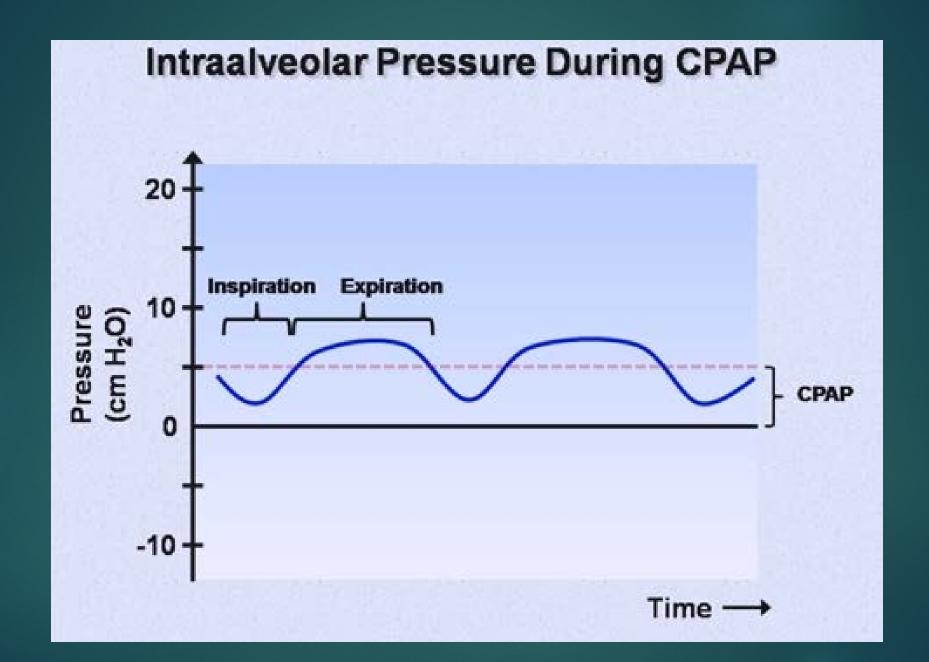
Respironics PerformaTrak® Full Face Mask

Ventilators

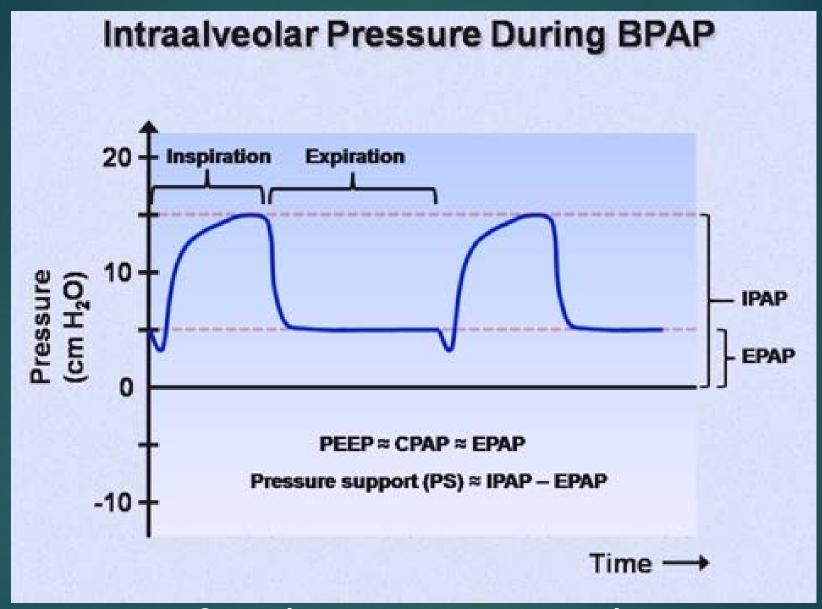
- Machines
 - ► NIV
 - **.....**

- Critical care ventilators
- Different ventilatory modes, the ability to change trigger sensitivity,
- ▶ To vary rise time to the set pressure,
- ► to adjust the sensing of the end of inspiration are just some of the features of newer ventilators.


PURPOSE


- ► To maintain gas exchange in case of acute and chronic respiratory failure.
- ▶ To maintain ventilator support after CPR.
- ▶ To reduce pulmonary vascular resistance.
- ▶ To excreate incresed co2 production.
- ▶ To give general anesthesia with muscle relaxants.

INDICATIONS


- Acute respiratory failure
- Apnea or impeding inability to breath
- Severe hypoxia/hypoxemia
- Respiratory muscle futigue
- Cardiac insufficiency
- Neurological problems

Modes in BIPAP

S mode: spontaneous mode

T mode: Time triggered mode

Effects: BPAP

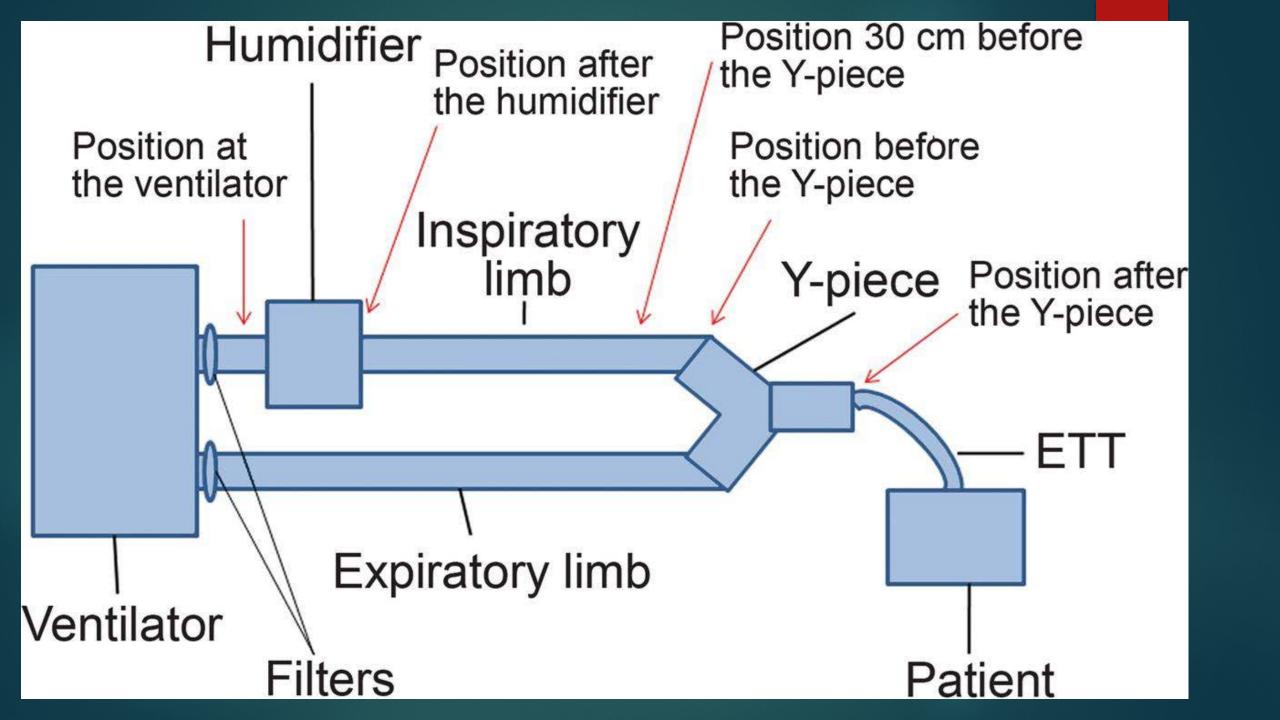
- ▶ Increases FRC by preventing end exp collapse
- improves lung compliance
- ▶ Put the flow-volume curve in advantageous condition
- Improves respiratory muscle fn : reduces dynamic hyperinflation advantage to the diaphragm and intercostals
- Enhances the delivery of bronchodilators to distal bronchial tree
- Improves gas exchange: by alveolar recruitment and corrects hypoxemia

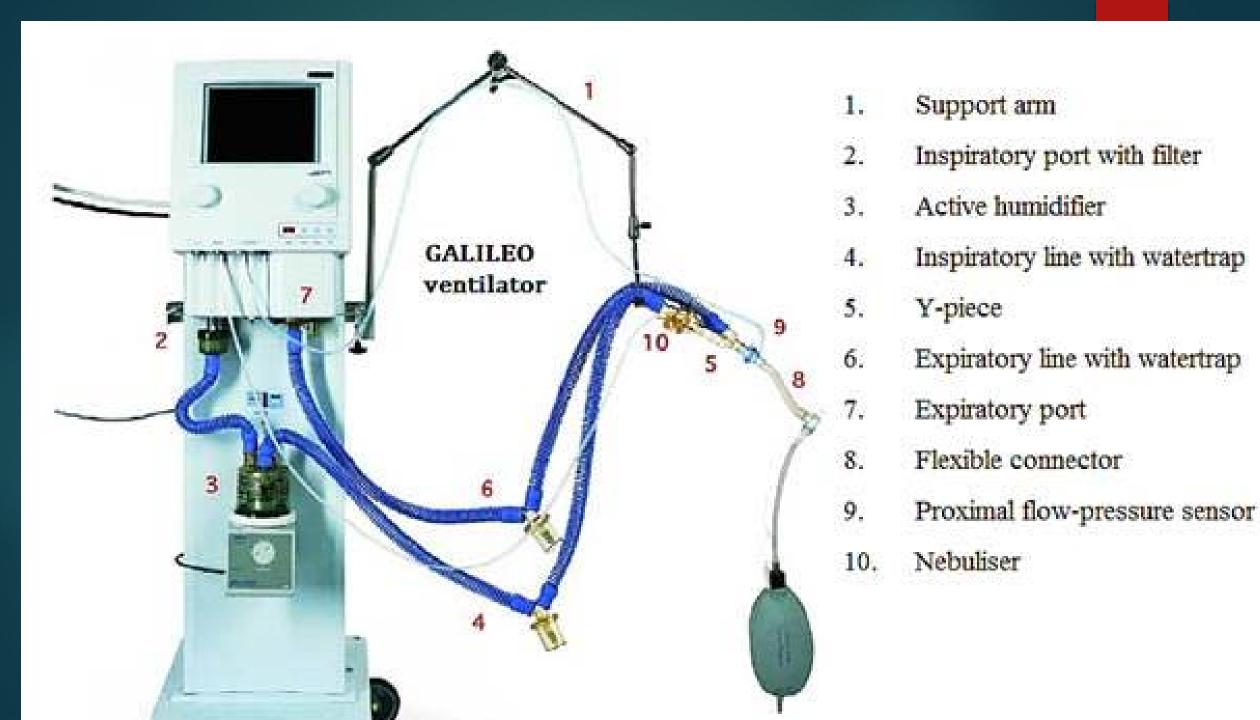
Mode	Pinsp		1 - 1
PC	19	3	2
BIPAP	mbar		

CPAP vs. BPAP - Summary

Mode	Intra-alveolar pressure	Typical settings (cm H2O)	Indication
CPAP	Intraalveolar Pressure During CPAP 20 Inspiration Expiration CPAP Time	Start: 5 Range: 5-12	Hypoxic failure (e.g. CHF)
BPAP	Intraalveolar Pressure During BPAP 20 Inspiration Expiration PPAP PPAP PPAP PRESSURE SUPPORT (PS) ≈ IPAP – EPAP Time →	Start: 10 / 5 Range: 10-20 / 5-12	Hypercapni c failure (e.g. COPD)

Failure of NIV


- ✓ Mask intolerance
- ✓ Failure to improve ventilation
- ✓ Claustrophobia
- ✓ Sensation of excessive air pressure
- ✓ Patient-ventilator asynchrony

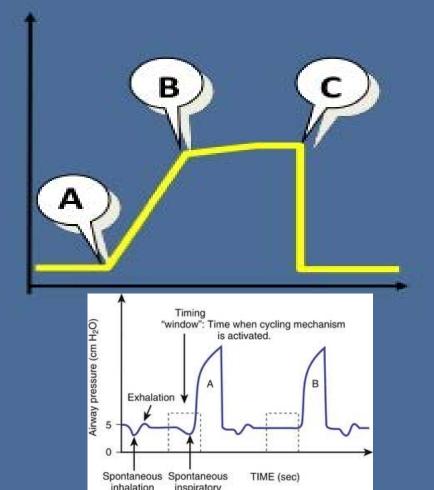

INVASIVE MECHANICAL VENTILATION

MODES OF INVASIVE MECHANICAL VENTILATION

- Modes of Invasive mechanical ventilation are the technique that the ventilator and patient work together to perform the respiratory cycle.
- 1. volume controlled ventilation
- 2. Pressure controlled ventilation
- 3. Pressure Regulated volume controlled ventilation
- ▶ 4.synchronised intermittent mandatory ventilation

Basic Variables

A. Trigger


What causes the breath to begin? ----Patient's effort

B. Limit

What regulates gas flow during the breath? ----Volume /Pressure/Time

C. Cycle

What causes the breath to end?
----Volume/Pressure/Time/Flow

Modes of Ventilation

- Controlled
 - Pressure Control (PC)
 - Volume Control (VC)
- Supported
 - Continuous Positive Airway Pressure (CPAP)
 - Pressure Support (PS)
- Combined
 - SIMV (PC) + PS
 - SIMV (VC) + PS

INITIAL SETTINGS

- RATE-START WITH A RATE THAT IS SOMEWHAT NORMAL:i.e 15 FOR ADOLESCENT/CHILD.20-30 FOR INFANT/SMALL CHILD
- FIO2:100%AND WEAN DOWN
- > PEEP:3-5
- > TV 8-10 ML/KG ,OR PIP 14-20
- PRESSURE SUPPORT 5-10
- DETERMINE THE MODE : CONTROL EVERY BREATH (A/C) OR SOME (SIMV)

Ventilator alarm settings

- Low exhaled volume alarm
- Low inspiratory pressure alarm
- High inspiratory pressure alarm
- Apnea alarm
- High respiratory rate alarm
- High and Low FiO2 alarm

Low exhaled volume alarm

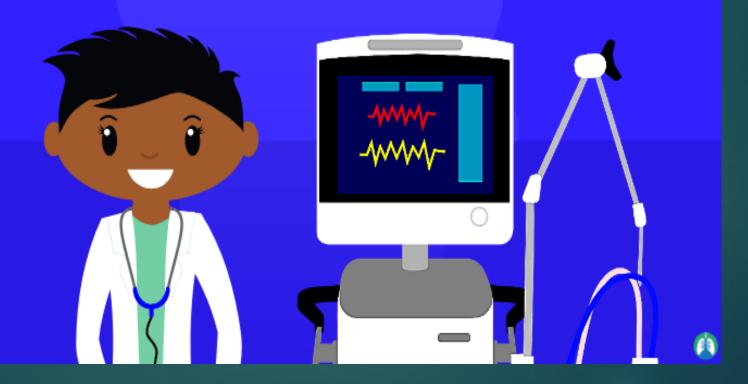
- → Set at 100 mL lower than the expired mechanical tidal volume
- → Triggered if patient does not exhale adequate tidal volume
- Detect a system leak or circuit disconnection

Low inspiratory pressure alarm

- → Set at 10-15 cm H2O below the observed peak inspiratory pressure
- Complements the low exhaled volume alarm
- → Detect system leak and circuit disconnection

- High inspiratory pressure alarm
- → Set at 10-15 cm H2O higher than observed peak inspiratory pressure
- → Cause -
- Water in the ventilatory circuit
- Kinking or biting of endotracheal tube
- Secretions in the airway
- Bronchospasm
- Tension pneumothorax
- Decrease in lung compliance
- Increased airway resistance
- coughing

Apnea alarm


→ Set with a 15 to 20 sec time delay and less time delay with a higher respiratory rate

 Ventilator provides full ventilatory support until the alarm condition no-longer exists

COMPLICATIONS

- 1) Airway complications
- Aspiration
- Decrease clearance of secretion
- VAP
- 2) Mechanical complications
- Barotrauma
- 3) Physiological complications
- Depressed cardiac function and hypotension
- 4) Artifical airway complications
- Tube kinked or pluged
- Cuff failure
- Tracheal stenosis
- Laryngeal edema

Weaning From Mechanical Ventilation

Readiness To Wean

- Improvement of respiratory failure
- Absence of major organ system failure
- Appropriate level of oxygenation
- Adequate ventilatory status
- Intact airway protective mechanism (needed for extubation)

Extubation

- Prerequisites to extubation include:
 - 1) A good cough/gag (to allow the child to protect their airway).
 - 2) NPO about 4 hours prior to extubation (in case the trial of extubation fails and reintubation is required).
 - 3) Minimize sedation.
 - 4) Adequate oxygenation on 40% FiO2 with CPAP (or PEEP) = 4.
 - 5) The availability of someone who can reintubate the patient, if necessary.
 - 6) Equipment available to reintubate the patient, if necessary.

► THANK YOU!